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Yang-Baxter equation for the asymmetric eight-vertex model

W. Galleas and M. J. Martins
Departamento de Fı´sica, Universidade Federal de Sa˜o Carlos, Caixa Postal 676, 13565-905, Sa˜o Carlos, Brazil

~Received 1 March 2002; published 17 October 2002!

In this paper we study, in the manner of Baxter@R. J. Baxter,Exactly Solved Models in Statistical Mechanics
~Academic, New York, 1982!#, the possible integrable manifolds of the asymmetric eight-vertex model. As
expected, they occur when the Boltzmann weights are either symmetric or satisfy the free-fermion condition;
but our analysis clarifies the reason why both manifolds need to share a universal invariant. We also show that
the free-fermion condition implies three distinct classes of integrable models.
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Exactly solved vertex models play a fundamental role
classical statistical mechanics. The most important of thes
the so-called eight-vertex model that contains as spe
cases most systems on a plane square lattice@1#. The general
asymmetric eight-vertex model possesses six different B
zmann weightsa6 , b6 , c, andd whose transfer matrix can
be written as

T5Gr 2@LL¯L1#, ~1!

where the trace is over the ordered product of local opera
Lj that are given by the following 232 matrix:

Lj5S a1s j
1s j

21b1s j
2s j

1 ds j
11cs j

2

cs j
11ds j

2 b2s j
1s j

21a2s j
2s j

1D ~2!

and s j
6 are Pauli matrices acting on sitesj of a one-

dimensional lattice. The asymmetric eight-vertex mode
known to be solvable in the manifolds.

F~a6 ,b6 ,c,d!50,
cd

a1b21a2b1
5I 1

F ,

a1
2 1b2

2 2a2
2 2b1

2

a1b21a2b1
5I 2

F ; ~3!

a65b7 , c5d or a65b6 , c5d; ~4!

a15a2 , b15b2 ,
cd

a1b1
5I 1

B ,
F~a6 ,b6 ,c,d!

a1b1
5I 2

B ;

~5!

whereF(a6 ,b6 ,c,d)5a1a21b1b22c22d2 andI 1,2
F,B are

arbitrary constants.
The manifold ~3! is the so-called free-fermion mode

whose free-energy was first calculated by Fan and Wu@2#
and later rederived by Felderhof@3# who devised a method to
diagonalize the corresponding transfer matrix. The integ
bility of the free-fermion manifold is usually assumed fro
the fact that its transfer matrix commutes with theXYHamil-
tonian as shown by Krinsky@4# who used a procedure firs
developed by Sutherland@5#. Later on Barouch@6# and
Kasteleyn @7# have revisited the problem of commutin
asymmetric eight-vertex transfer matrices and general
Heisenberg Hamiltonians that led Kasteleyn@7# to point out
the existence of the manifolds~4!. As stressed by this autho
however, such manifolds are trivial because they can be s
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as a set of independent one-dimensional models and th
fore they should be disregarded. On the other hand, the
lution of the symmetric manifold was found by Baxte
through quite general approach, denominated commu
transfer matrix method that culminated in the famous ‘‘st
triangle’’ relations @1#. The fact that the symmetric eight
vertex transfer matrix commutes with a relatedXYZHamil-
tonian@5# has then been made more precise because the l
is essentially a logarithmic derivative of the former@1#.

It would be quite desirable to extend the Baxter method
the asymmetric eight-vertex model and to rederive the ma
folds ~3! and ~5! from a unified point of view. Since this
approach does not assumea priori the existence of a specifi
local form for the corresponding Hamiltonian, it can lead
to integrable manifolds not covered by the analysis of B
rouch@6# and Kasteleyn@7#. We recall that much of the work
on this problem, see, e.g., Refs.@8–10# has been concen
trated on analyzing the Yang-Baxter equations directly
terms of spectral parameters. Though this is a valid
proach, it often hides the general integrable manifolds
terms of specific parametrizations that need to be found ba
posteriori guess work. A more direct way would be first t
determine the solvable manifolds by an algebraic study in
manner Baxter of the corresponding star-triangle equati
and afterwards to parametrize them by using the theory
uniformization of biquadratic polynomials@1#. It appears that
Kasteleyn@7# was the first to make an effort toward suc
analysis, but the best he could do was to guess the man
~3! from known results by Felderhof besides clarifying t
origin of the pseudo-one-dimensional manifold~4! as the
linearization of the Yang-Baxter equation around a nonid
tity 434 R matrix. Since the later possibility leads us
trivial manifolds we will disregard it, as did Kasteleyn, from
our forthcoming analysis.

The probable reason that such generalization has not
been carried out seems technical, since in the asymm
model we have to deal with the double number of equati
as compared to the symmetric eight-vertex model. At fi
sight this appears to be a cumbersome task, but here
show that it is possible to simplify this problem, without tak
recourse to computer manipulations, to a number of sim
equations that will clarify the common origin of the abov
two integrable manifolds. Besides that, this approach allo
us to show that manifold~3! is one of the three possibl
different integrable branches satisfying the free-fermion c
dition. The star-triangle relations are sufficient conditions@1#
for commuting transfer matrices and for the asymme
eight-vertex model they are given by
©2002 The American Physical Society03-1
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a6a68 d91dc8a79 5cd8a69 1b7b78 d9, ~6!

db68 c91a6d8b79 5b6d8a69 1cb78 d9, ~7!

db68 b69 1a6d8c95da68 a69 1a7c8d9, ~8!

ca68 c91b6c8b79 5a6c8a69 1da78 d9, ~9!

ca68 b69 1b6c8c95cb68 a69 1b7d8d9, ~10!

b7a68 c91cc8b79 5dd8b69 1a6b78 c9. ~11!

Note that each of these equations possesses two poss
ties and we shall denote them by Eqs.~6!–~11!. Altogether
we have twelve linear homogeneous equations and only
weights, saya69 , b69 , c9 and d9, are at our disposal to b
eliminated in terms of the remaining set of weigh
$a6 ,b6 ,c,d% and $a68 ,b68 ,c8,d8%. Therefore we have to
choose the appropriate equations to start with and our s
tion goes as follows. We first eliminate the weightsa69 with
the help of the pair of Eqs.~9! and ~10! and by substituting
the result in Eqs.~6! we find the following relations:

b69 ~a7ca68 d82db7b68 c8!5c9~cda78 b68 2a7b6c8d8!

1d9@a7b7~d822b68 b78 !

1a68 b68 ~a6a72d2!#. ~12!

Next we apply a similar procedure in the case of Eqs.~7!
and~8! and the corresponding relations between the weig
b69 , c9, andd9 are

b69 ~db7b68 c82a7ca68 d8!5c9~cda68 b78 2a6b7c8d8!

1d9@a7b7~c822a68 a78 !

1a68 b68 ~b6b72c2!#. ~13!

From Eqs.~12! and~13! it is not difficult to eliminate the
weightsb69 , leading us to constraints betweenc9 andd9,

c9@cd~a68 b78 1a78 b68 !2c8d8~a6b71a7b6!#

5d9@a7b7F~a68 ,b68 ,c8,d8!2a68 b68 F~a6 ,b6 ,c,d!#.

~14!

At this point it is tempting to use such equations and
previous results fora69 andb69 to eliminate the ratios of the
five weights and to substitute them in the remaining eq
tions, namely, Eqs.~11!, and either Eqs.~12! or Eqs.~13!.
This is, however, not so illuminating because it leads us
carry out simplifications in complicated expressions. We fi
that it is more profitable to repeat the procedure descri
above, but now we first eliminate the weightsb69 and in the
end we use Eqs.~11! instead of Eqs.~6!. This leads us to a
different constraint betweenc9 andd9 given by

d9@cd~a68 b78 1a78 b68 !2c8d8~a6b71a7b6!#

5c9@a7b7F~a68 ,b68 ,c8,d8!2a78 b78 F~a6 ,b6 ,c,d!#.

~15!
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Now we reached a point that enables us to make con
sions on the way the set of weights$a6 ,b6 ,c,d% and
$a68 ,b68 ,c8,d8% should be related to each other. In fact, fro
Eqs.~14! and ~15! we find that the necessary conditions f
the weightsc9 andd9 not to be all zero are

cd

a1b21a2b1
5

c8d8

a18 b28 1a28 b18
~16!

and either

F~a6 ,b6 ,c,d!5F~a68 ,b68 ,c8,d8! ~17!

or

a1b1

a2b2
5

a18 b18

a28 b28
51,

F~a6 ,b6 ,c,d!

a2b2
5

F~a68 ,b68 ,c8,d8!

a28 b28
.

~18!

We are already in a position to conclude that the asy
metric eight-vertex model has indeed only two possible in
grable manifolds, one is singled out by the free-fermion co
dition ~17! while the other, Eq.~18!, turns out to be a mixed
type of conditions that relate the set of weights both alo
and between each other. One important point of our anal
is that it makes clear that both manifolds need to shar
common invariant given by Eq.~16!.

To conclude our analysis, it remains to check the con
tency between Eqs.~6! and Eqs.~11!, which can in principle
be a source of further constraints. From such equations
can easily calculate the ratiosa19 /a29 andb19 /b29 , namely,

a19

a29
5

cd8~a1a18 2b2b28 !2dc8~b1b18 2a2a28 !

dc8~a1a18 2b2b28 !2cd8~b1b18 2a2a8!
, ~19!

b19

b29
5

dd8~b2a18 2a2b28 !2cc8~a2b18 2b1a28 !

cc8~b2a18 2a1b28 !2dd8~a2b18 2b1a28 !
, ~20!

which in principle can be compared with our previous resu
for the same ratios.

Before proceeding with that, however, there exists o
property that we have not yet explored. Instead of start
our analysis by eliminating the weightsa69 , b69 , c9 and d9
we could choose to begin with the other two sets of weig
as well. Because the star-triangle equations are not sym
ric by exchanging a given two sets of weights, we expect t
each possibility will lead us to a different kind of constrain
This means that we can use the asymmetry of the weight
our favor, which may help us in further simplifications. F
example, the relations~6!–~11! are invariant under the ex
change of weights$a69 ,b69 ,c9,d9% and $a6 ,b6 ,c,d% only
after the transformationb6→b7 is performed for all set of
weights. This means that if we had started our procedure
eliminating the weightsa6 , b6 , c, andd the same analysis
we have carried out so far will lead us to the following co
straints:

c8d8

a18 b18 1a28 b28
5

c9d9

a19 b19 1a29 b29
, ~21!

besides that either

F~a68 ,b68 ,c8,d8!5F~a69 ,b69 ,c9,d9!50 ~22!
3-2
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FIG. 1. Summary of the integrable manifold
of the asymmetric eight-vertex model. The sym
bols I 1 , I 2

(Fa) , andI 2
(Fb) denote invariants for two

distinct sets of weights.
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a28 b18

a18 b28
5

a29 b19

a19 b29
51,

F~a68 ,b68 ,c8,d8!

a28 b18
5

F~a69 ,b69 ,c9,d9!

a29 b19
. ~23!

By the same token if we had started by eliminatinga68 ,
b68 , c8, andd8 we will find

cd

a1b11a2b2
5

c9d9

a19 b29 1a29 b19
~24!

and that either

F~a6 ,b6 ,c,d!5F~a69 ,b69 ,c9,d9!50 ~25!

or

a2b1

a1b2
5

a19 b19

a29 b29
51,

F~a6 ,b6 ,c,d!

a2b1
5

F~a69 ,b69 ,c9,d9!

a29 b29
.

~26!

Let us now analyze the consequences of this observa
for each possible integrable manifold and here we begin w
the second manifold. It is not difficult to see that the cons
tency of Eqs.~18!, ~23!, and~26!, to what concern relations
within the same set of weights, impose severe restrictions
the second type of the manifold, namely,

a15a2 and b15b2 or a152a2 and b152b2

~27!

and similar conditions for the other sets$a68 ,b68 % and
$a69 ,b69 %.

It turns out, however, that the only possibility compatib
with the ‘‘universal’’ constraints~16!, ~21!, and ~24! is the
totally symmetric casea15a2 and b15b2 leading us
therefore to the Baxter model~5!. Note that in this situation
the compatibility between Eqs.~6! and Eqs.~11! is trivial
because both Eqs.~19! and ~20! are automatically satisfied.

We now turn our attention to the free-fermion manifol
In this case we have much less restrictive constraints s
we are only left with relations between different weigh
namely, Eqs.~16!, ~21!, and~24!. Altogether these equation
provide us the following relation:
04710
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a19 b19 1a29 b29

a19 b29 1a29 b19
5

a1b21a2b1

a1b11a2b2

a18 b18 1a28 b28

a18 b28 1a28 b18
~28!

whose compatibility with Eqs.~6! and ~11! can be imple-
mented by evaluating the left-hand side of Eq.~28! with the
help of Eqs.~19! and~20!. After few manipulations, in which
the free-fermion condition is explicitly used, we end up wi
a ‘‘separable’’ equationP50 for the weights$a6 ,b6 ,c,d%
and$a68 ,b68 ,c8,d8% and the polynomialP is given by

P5@~c21d2!~a18 b18 1a28 b28 !2~a1b11a2b2!

3~c821d82!#@a2b1a28 b18 2a1b2a18 b28 #

3@~a1
2 1b2

2 2a2
2 2b1

2 !~a18 b28 1a28 b18 !

2~a1b21a2b1!~a18
21b28

22a28
22b18

2!#. ~29!

From this equation we conclude that we have three p
sible free-fermion integrable manifolds given by either

a1
2 1b2

2 2a2
2 2b1

2

a1b21a2b1
5

a18
21b28

22a28
22b18

2

a18 b28 1a28 b18
~30!

or

a1b2

a2b1
5

a18 b28

a28 b18
561, ~31!

or still

c21d2

a1b11a2b2
5

c821d82

a18 b18 1a28 b28
, ~32!

besides, of course, the free-fermion conditions for b
$a6 ,b6 ,c,d% and $a68 ,b68 ,c8,d8% together with the ‘‘uni-
versal’’ relation ~16!. Note that the free-fermion case~31!
cannot be related to the manifold~4! beginning by the fact
that in the former model the weightc can be different than
the weightd.

In Fig. 1 we have summarized all the results obtained
far. Let us now compare our results with previous wo
in the literature. Contrary to what happened to the symme
manifold ~5! we recall that Eqs.~30! and ~31! do not imply
that the ratios (a1

2 1b2
2 2a2

2 2b1
2 )/(a1b21a2b1)

and (c21d2)/(a1b11a2b2) are necessarily constants, b
only that they are invariants for two distinct sets
3-3
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weights.1 This is the reason why general solutions of t
Yang-Baxter equation satisfying the free-fermion conditi
are expected to be nonadditive@10#. In fact, in the Appendix
we show that the additional assumption of additivity pr
vides us extra restriction to the weights. In this sense,
manifold ~30! turns out to be a generalization of the origin
result ~3! by Krinsky @4#. Next the manifold~31! has been
only partially obtained in the literature, more precisely in t
special casea15a2 and b152b2 @8,10#.2 Finally, to the
best of our knowledge, the last branch~32! is new in the
literature. The probable reason why such general manifo
have been missed in previous work, see, for example, R
@8,10#, is related to the analysis of the Yang-Baxter equat
in terms of spectral parameters. There it was required th
certain value of the spectral parameter~initial condition!
weights should be regular, i.e., that the correspondingL j

operator be proportional to the four-dimensional permuta
Note that theL j operator of manifold~32! cannot be made
regular and therefore does not have a local associated Ha
tonian. This is also the reason why Barouch@6# and Kaste-
leyn @7# missed such manifold since they used the assu
tion of local forms of Hamiltonians. We recall that thoug
the property of regularity guarantees that the logarithmic
rivative of the transfer matrix islocal, this is by no means a
necessary condition for integrability.

In summary, we have analyzed according to Baxter
integrable branches of the asymmetric eight-vertex mo
Besides recovering Baxter’s model we have shown that
free-fermion condition produces three different sets of in
grable manifolds. A natural question to be asked is whet
or not the new manifolds~31! and~32! can be solved by the
method devised by Felderhof originally proposed to dia
nalize the transfer matrix of Krinsky’s manifold~3!. This is
of interest since these systems can be the corner ston
highly nontrivial models as have been recently discusse
Refs. @11,12#. In fact, we have evidences that the manifo
~31! is related to a staggeredXY model. Because both th
Baxter symmetric model and the free-fermion manifo

1The same statement is of course valid for the ‘‘universal’’ ra
cd/(a1b21a2b1).

2Of course the other possibilitya15a2 andb15b2 is contained
in the Baxter solution.
cs
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~30!–~32! share a common algebraic structure, the Yan
Baxter algebra, it is plausible to think that Baxter’s gener
ized Bethe ansatz can be adapted to include the solutio
the free-fermion models too. This problem has eluded us
far though some progress has been made in the case o
simplest free-fermion branch~31!.
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APPENDIX

The purpose here is to demonstrate that the hypothes
additivity of the weights leads us to much more restricti
conditions for the free-fermion manifold as compared w
the results~30!–~32! of the main text. In order to see tha
lets us consider as usual that the weightsa6 , b6 , c, d are
parametrized by variablesx1 andx2 and similarly thata68 ,
b68 , c8, d8 anda69 , b69 , c9, d9 are parametrized byx1 ,x3
andx2 ,x3 , respectively. The consistency between the univ
sal relations~16!, ~21!, and~24! implies a remarkable sepa
rability condition for the ratio

a1~x1 ,x2!b2~x1 ,x2!1a2~x1 ,x2!b1~x1 ,x2!

a1~x1 ,x2!b1~x1 ,x2!1a2~x1 ,x2!b2~x1 ,x2!
5

G~x1!

G~x2!
,

~A1!

whereG(x) is an arbitrary function.
The additional assumption that the weights are addit

means that this function is necessarily a constant, which
timately leads us to the relation

~a12a2!~b12b2!50. ~A2!

As a consequence of that, the possible manifolds sati
ing the free-fermion condition are eithera15a2 or b1

5b2 . Now by imposing the consistency between Eq.~6!
and Eq.~11! it turns out that these two possibilities becom
either

a15a2 and b152b2 ~A3!
or

b15b2 and
a12a2

b1
5D, ~A4!

whereD is a constant.
Clearly, these are special cases of the manifolds~31! and

~30!, respectively.
-
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