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Yang-Baxter equation for the asymmetric eight-vertex model
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In this paper we study, in the manner of Baxt@r J. BaxterExactly Solved Models in Statistical Mechanics
(Academic, New York, 1984, the possible integrable manifolds of the asymmetric eight-vertex model. As
expected, they occur when the Boltzmann weights are either symmetric or satisfy the free-fermion condition;
but our analysis clarifies the reason why both manifolds need to share a universal invariant. We also show that
the free-fermion condition implies three distinct classes of integrable models.
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Exactly solved vertex models play a fundamental role inas a set of independent one-dimensional models and there-
classical statistical mechanics. The most important of these fore they should be disregarded. On the other hand, the so-
the so-called eight-vertex model that contains as specidution of the symmetric manifold was found by Baxter
cases most systems on a plane square ldttic&he general through quite general approach, denominated commuting
asymmetric eight-vertex model possesses six different Bolitransfer matrix method that culminated in the famous “star-

zmann weights., , b. , ¢, andd whose transfer matrix can triangle” relations[1]. The fact that the symmetric eight-
be written as vertex transfer matrix commutes with a relatédZ Hamil-

tonian[5] has then been made more precise because the latter
T=Iro[ Ly L], (1)  is essentially a logarithmic derivative of the fornjéi.
It would be quite desirable to extend the Baxter method to
e asymmetric eight-vertex model and to rederive the mani-
folds (3) and (5) from a unified point of view. Since this

where the trace is over the ordered product of local operatort?1
L; that are given by the following 22 matrix:

a.o o +b.o ot dot +co approach does not assum@riori the existence of a specific
L= 7 J+ *_J J . J_ J @ local form for the corresponding Hamiltonian, it can lead us
! coj +doj b_ojo; +ta_oj o to integrable manifolds not covered by the analysis of Ba-

rouch[6] and Kasteleyii7]. We recall that much of the work

and o, are Pauli matrices acting on sitgsof a one-  On this problem, see, e.g., Ref8-10 has been concen-
dimensional lattice. The asymmetric eight-vertex model israted on analyzing the Yang-Baxter equations directly in
known to be solvable in the manifolds. terms of. spectral_parameters. Thoggh this is a \{ahd ap-
proach, it often hides the general integrable manifolds in
cd F terms of specific parametrizations that need to be found by
F(a.,b.,c,d)=0, mzll ' posteriori guess work. A more direct way would be first to
determine the solvable manifolds by an algebraic study in the
a2 +b? —a?—b? manner Baxter of the corresponding star-triangle equations
:|§; (3) and afterwards to parametrize them by using the theory of
a;b_+a b, uniformization of biquadratic polynomial4]. It appears that
] Kasteleyn[7] was the first to make an effort toward such
a.=bs, c=d or a.=b., c=d 4 analysis, but the best he could do was to guess the manifold
cd F(a. .b. c.d) (3) from known results by Felderhof besides clarifying the
a,=a_, b,=b_ —|B Sl ] - origin of.the pseudo—one-dlmensmnql manifald) as thga
’ "oashy Y ab, 2’ linearization of the Yang-Baxter equation around a noniden-

(5)  tity 4x4 R matrix. Since the later possibility leads us to
whereF(a. .b. .c.d)=a,a_+b.b_—c’—d? andl EZB are gme;:)m&nc;fgligz v;ﬁaleg!ig.lsregard it, as did Kasteleyn, from
arbitrary constants. _ The probable reason that such generalization has not yet
The manifold (3) is the so-called free-fermion model peen carried out seems technical, since in the asymmetric
whose free-energy was first calculated by Fan and[@lu  model we have to deal with the double number of equations
and later rederived by Felderhid] who devised a method to as compared to the symmetric eight-vertex model. At first
diagonalize the corresponding transfer matrix. The integrasight this appears to be a cumbersome task, but here we
bility of the free-fermion manifold is usually assumed from show that it is possible to simplify this problem, without take
the fact that its transfer matrix commutes with tkéHamil-  recourse to computer manipulations, to a number of simple
tonian as shown by Krinskj{4] who used a procedure first equations that will clarify the common origin of the above
developed by Sutherlanfb]. Later on Barouch[6] and two integrable manifolds. Besides that, this approach allows
Kasteleyn[7] have revisited the problem of commuting us to show that manifold3) is one of the three possible
asymmetric eight-vertex transfer matrices and generalizedifferent integrable branches satisfying the free-fermion con-
Heisenberg Hamiltonians that led Kasteldyt to point out  dition. The star-triangle relations are sufficient conditiphls
the existence of the manifoldd). As stressed by this author, for commuting transfer matrices and for the asymmetric
however, such manifolds are trivial because they can be searght-vertex model they are given by
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a.a.d’+dc’a’=cd a’.+b-b.d", (6) Now we reached a point that enables us to make conclu-
o N sions on the way the set of weighta. ,b. ,c,d} and
db.c"+a.d'b”.=b.d'a’. +ch’d", (7) {al,b’,c’,d"} should be related to each other. In fact, from
Egs.(14) and(15) we find that the necessary conditions for
db.b’ +a.d'c"=da.a’ +a;c'd", (8)  the weightsc” andd” not to be all zero are
calc"+b.c'b”=a.c'a’+da’.d", 9 cd - ¢c'd (16)
ab_+a_b, a‘b’+a’b}
ca.b’+b.c'c"=cbla’+b;d'd", (10 .
and either
b;af_,_CH‘{‘CC,b;_:dd/b;+atb/;C”. (11) F(a+,b+,C,d)=F(aL,bL,C’,d,) (17)

Note that each of these equations possesses two possibifj
ties and we shall denote them by E¢8)—(11). Altogether
we have twelve linear homogeneous equations and only sba;b, aib}  F(a.,b.,c,d) F(al,b.,c’.d’)
weights, saya’, , b, ¢” andd”, are at our disposaltobe a_b_ "~ a’'b’ a b - a' b’ '
eliminated in terms of the remaining set of weights (18
{a+,b.,c,d} and{a’ ,b’ ,c’,d'}. Therefore we have to . iy
choose the appropriate equations to start with and our solu- V\/_e are already in a position to conclude that th_e asym-
: ) L S metric eight-vertex model has indeed only two possible inte-
tion goes as follows. We first eliminate the weights with

. I grable manifolds, one is singled out by the free-fermion con-
the help of the pair of Eq€9) and(10) and by substituting  gition (17) while the other, Eq(18), turns out to be a mixed

the result in Eqs(6) we find the following relations: type of conditions that relate the set of weights both alone

" rgr Pty — N 'y and between each other. One important point of our analysis

b (azca.d’—dbzb.c)=c"(cdazb; ~azb.c'd’) is that it makes clear that both manifolds need to share a
+d"[a-b-(d'2—b’b") common invariant given by Eq16).

To conclude our analysis, it remains to check the consis-
+a.b.(a.a-—d?)]. (12 tency between Eq$6) and Eqs(11), which can in principle
be a source of further constraints. From such equations one
Next we apply a similar procedure in the case of E@$. can easily calculate the ratia§ /a” andb’./b” , namely,
and(8) and the corresponding relations between the weights
b’ , ¢”, andd” are a’J’r B Cd’(a+a'+—b,b’,)—dc’(b+b'+—a,a',) (19)
a” dc'(ayal—b_b’)—cd(b,b,—a a’')’

b" (db;b’.c'—a;ca.d’)=c"(cda.bl—a.b.c’'d")
b’ dd'(b_al,—a_b’)-cc'(a_b),—b,a’)
b’ cc'(b_a,—-a,b’)-dd (a_b,—b,a’)

which in principle can be compared with our previous results

From Egs.(12) and(13) it is not difficult to eliminate the for the same ratios.

+d"[asb-(c'?—a’al)

+albi(b.b-—c?]. (13

. (20

weightsb”. , leading us to constraints betweehandd”, Before proceeding with that, however, there exists one
- property that we have not yet explored. Instead of starting
c’[cd(albl+albl)—c'd'(asbs+azb.)] our analysis by eliminating the weights. , b, , ¢’ andd”
L L we could choose to begin with the other two sets of weights
=d"[asbsF(al bl ,c’,d")~albiF(a. ,b.,c,d)]. as well. Because the star-triangle equations are not symmet-

(14) ric by exch_a_n_ging_a given two sets of Weig_hts, we expect that
each possibility will lead us to a different kind of constraints.
At this point it is tempting to use such equations and theThis means that we can use the asymmetry of the weights in
previous results foa”. andb”. to eliminate the ratios of the our favor, which may help us in further simplifications. For
five weights and to substitute them in the remaining equaexample, the relationé5)—(11) are invariant under the ex-
tions, namely, Eqs(11), and either Eqs(12) or Egs.(13).  change of weightga’. ,b". ,c”,d"} and{a. ,b. ,c,d} only
This is, however, not so illuminating because it leads us tdfter the transformatiob.. —b- is performed for all set of
carry out simplifications in complicated expressions. We findveights. This means that if we had started our procedure by
that it is more profitable to repeat the procedure describegliminating the weights.., b , ¢, andd the same analysis
above, but now we first eliminate the weights and in the ~We have carried out so far will lead us to the following con-

end we use Eqg11) instead of Eqs(6). This leads us to a SUaints:
different constraint betwees” andd” given by c'd’ c"d”
! ! ! ! = 4 n n ”n (21)
d’[cd(a’ bl +alb))—c'd'(a-b-+a=b.)] alb,+a’b. a’bl+a’b”
=c"[a;b.F(al b, ,c’,d")—a.b.F(a.,b.,c,d)]. besides that either
(15) F(al,bl,c',d")=F(a%,b%,c",d")=0 (22
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e =h
] FIG. 1. Summary of the integrable manifolds
_ Baxter Free-Fermion of the asymmetric eight-vertex model. The sym-
a+ =a-, by =b_ Flas,bt,c,d) =0 Fa) (Fy) L
bolsly, 15 *, andl; ® denote invariants for two
l distinct sets of weights.
oy o | |
a2 4b abc” d? =1
bo _ 22 _ (Fa) 2 442 —a? b2 F
ay =#| gt =h e =L
or aib)+a’b” a,b +a b, a\bl+a’b’ 28
a’b, a"b" alb”+a’p], a;b.+a_b_a b’ +a'b
albl alb” ™’ whose compatibility with Eqs(6) and (11) can be imple-

mented by evaluating the left-hand side of E2B) with the
23) help of Eqs(19) and(20). After few manipulations, in which
the free-fermion condition is explicitly used, we end up with
a “separable” equatioP=0 for the weights{a.. ,b.. ,c,d}
By the same token if we had started by eliminating, and{a’ ,b’ ,c’,d’} and the polynomiaP is given by

b’ , c¢’, andd’ we will find
P=[(c*+d?(a}b\+a’ b’ )—(a;b,+a b.)

F(a,,b.,c’,d") F(a%,b" ,c",d")
a’ b’ B a’ b’ '

Cd Clld//
ab.tab ab +ab) (24) X(c'?+d'?)][a b,a’ b\ —a,b a\b’]
and that either x[(a%+b%—a?—b%)(a.b +a’b})
F(ai,bi,C,d):F(a;,bg,C",d”):o (25) —(a+b,+a,b+)(a’+2+b’,z—a',z—b'f)]. (29)
or From this equation we conclude that we have three pos-
sible free-fermion integrable manifolds given by either
a*bJr:a’%’»b:’r: F(aivbtycad):F(alvbzgaC"!d”) aZ +b2_a2_b2 a/2+b/2_a/2_b12
a,b_ a’b’ a_b, a’b” ' - = (30
(26) a,b_+a_b, a, b’ +a’b!
Let us now analyze the consequences of this observatio®'
for each possible integrable manifold and here we begin with a.b a' b’
the second manifold. It is not difficult to see that the consis- MR (32)
tency of Eqs(18), (23), and(26), to what concern relations a-b, a’b}
within the same set of weights, impose severe restrictions ogr Still
the second type of the manifold, namely,
2 2 12 12
a,=a_ and b,=b_ ora,=—a_ andb,=-hb_ ¢ +d — ¢"+d (32)
(27 a;b,+a b a\b,+a’b’’

and similar conditions for the other sefg’ ,b’.} and besides, of course, the free-fermion conditions for both
{a’ b’} {a-,b.,c,d} and{a’ ,b’ ,c’,d’} together with the “uni-

It turns out, however, that the only possibility compatible versal” relation (16). Note that the free-fermion caggl)
with the “universal” constraints16), (21), and (24) is the  cannot be related to the manifold) beginning by the fact
totally symmetric casea,=a_ and b,=Db_ leading us that in the former model the weiglttcan be different than
therefore to the Baxter modéb). Note that in this situation the weightd.
the compatibility between Eq$6) and Eqgs.(11) is trivial In Fig. 1 we have summarized all the results obtained so
because both Eq$19) and(20) are automatically satisfied. far. Let us now compare our results with previous work

We now turn our attention to the free-fermion manifold. in the literature. Contrary to what happened to the symmetric
In this case we have much less restrictive constraints sincaanifold (5) we recall that Eqs(30) and(31) do not imply
we are only left with relations between different weights,that the ratios zﬁ+b2_—a2_—bi)/(a+b_+a_b+)
namely, Eqs(16), (21), and(24). Altogether these equations and ?+d?)/(a.b, +a_b_) are necessarily constants, but
provide us the following relation: only that they are invariants for two distinct sets of

047103-3



BRIEF REPORTS PHYSICAL REVIEW B6, 047103 (2002

weights! This is the reason why general solutions of the(30)—(32) share a common algebraic structure, the Yang-
Yang-Baxter equation satisfying the free-fermion conditionBaxter algebra, it is plausible to think that Baxter’'s general-
are expected to be nonadditif&0]. In fact, in the Appendix ized Bethe ansatz can be adap_ted to include the solution of
we show that the additional assumption of additivity pro_the free-fermion models too. This problem has eluded us so
vides us extra restriction to the weights. In this sense, thé?r though some progress has been made in the case of the
manifold (30) turns out to be a generalization of the original simplest free-fermion branct81).

result (3) by Krinsky [4]. Next the manifold(31) has been ACKNOWLEDGMENTS

only partially obtained in the literature, more precisely in the
special casa,=a_ andb,=—b_ [8,10).2 Finally, to the
best of our knowledge, the last bran¢®2) is new in the
literature. The probable reason why such general manifolds APPENDIX

have been missed in previous work, see, for example, Refs. _ _
[8,10], is related to the analysis of the Yang-Baxter equation The purpose here is to demonstrate that the hypothesis of

in terms of spectral parameters. There it was required that gdd(ijt!;/_ity oi th::thwefight? leads us to.fn?cl;Ch more rest(;icti_\{ﬁ
certain value of the spectral parametamitial condition condrtions tor the tree-fermion manitold as compared wi

weights should be regular, i.e., that the corresponding the results(30)—(32) of the main text. In order to see that,

lets us consider as usual that the weights, b.., c, d are

operator be proportional to the four-dimensional permUtatorparametrized by variables, andx, and similarly thata’, ,

Note that thel; operator of manifold32) cannot be made b’ ,c’, d anda’, b’ c", d" are parametrized by, xs

regular and therefore does not have a local associated Hamg-ﬁdx2 Xa, respec_tively. The consistency between the univer-

tonian. This is also the reason why BaroUéf} and Kaste- g relationg(16), (21), and(24) implies a remarkable sepa-
leyn [7] missed such manifold since they used the assUMprapility condition for the ratio

tion of local forms of Hamiltonians. We recall that though

the property of regularity guarantees that the logarithmic de- &+ (X1,X2)b_(X1,Xz) +a_(X1,X2)b. (X1,X2)  G(Xy)

rivative of the transfer matrix ifcal, this is by no means a a. (Xq,X2)b(X1,X) +a_(Xy,X)b_(X1,%X2)  G(Xp)’

necessary condition for integrability. (A1)
In summary, we have analyzed according to Baxter th?NhereG(x) is an arbitrary function.

integrable branches of the asymmetric eight-vertex model. The additional assumption that the weights are additive

Besides recovering Baxter's model we have shown that thg,eang that this function is necessarily a constant, which ul-
free-fermion condition produces three different sets of '”te’[imately leads us to the relation

grable manifolds. A natural question to be asked is whether

or not the new manifold§31) and(32) can be solved by the (a;—a_)(by—b_)=0. (A2)
method devised by Felderhof originally proposed to diago-
nalize the transfer matrix of Krinsky’s manifol®). This is ina the free-fermion condition are either.=a_ or b

of interest since these systems can be the corner stone c_lf% . Now by imposing the consistency +betw_een Eé).
highly nontrivial models as have been recently discussed g £q (11) it turns out that these two possibilities becomes
Refs.[11,12. In fact, we have evidences that the manifold gjiher

(31) is related to a staggeredY model. Because both the

This work was partially supported by the Brazilian re-
search agencies CNPg and Fapesp.

As a consequence of that, the possible manifolds satisfy-

Baxter symmetric model and the free-fermion manifolds a,=a- and b,=-b_ (A3)
or
a.+ - a._
b,=b_ and =A, (A4)

The same statement is of course valid for the “universal” ratio b.
cd/(a b_+a_b,). whereA is a constant.

20f course the other possibility, =a_ andb, =b_ is contained Clearly, these are special cases of the manif¢ids and
in the Baxter solution. (30), respectively.
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